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Triradicals contain three electrons in three orbitals that are similar
in energy* As a result, these species have several low-lying
electronic states. This characteristic makes triradicals fascinating
species to study. However, most prior studies of organic triradicals
have been computational in nature because of the difficulty in
studying such highly reactive species experimentaltyz,z,7-
Polyarylmethyl and calixarene triradicals have been characterized
via ESR, NMR, and UV+vis spectroscopy and cyclic voltammetry
by Rajca and Rajc&.® Magnetic field effects on the decay kinetics
of 7t,7t,7-triradicals have been examined by Hayashi and co-workers
using UV-vis spectroscop$P Roffia and co-workers have inves-
tigated substituted fullerene,r,-triradicals via ESR and cyclic
voltammetry!! Finally, Wenthold et al. have carried out thermo-
chemical measurements on 1,3,5-tridehydrobenzeeottriradi-
cal), 5-dehydro-1,3-quinodimethane,f,z-triradical), and 1,3,5-
trimethylenebenzener(r,-triradical) 1215

The chemical properties of organic triradicals appear to be
unexplored, in contrast to organic biradic#is!® We report here a
kinetic reactivity study on an organic triradical, the positively
chargeds,o,-triradicalN-methylene-5,8-didehydroisoquinolinium
ion (@). The gas-phase reactivity of this triradical is compared to
that of a related, previously unreporteg-biradical, N-methylene-
5-dehydroisoquinolinium ionk), and z-monoradical,N-methyl-
eneisoquinolinium iond), as well as a previously studiego-
biradical, N-methyl-5,8-didehydroisoquinoliniu#fion (c), and a
o-monoradicalN-methyl-5-dehydroisoquinolinium iom).17?°The
positive charge in these molecules acts merely as an electron-
withdrawing substituent, as demonstrated earlier for mono- and
biradicalst—2°

Triradicala was synthesized in a dual-cell Fourier transform ion
cyclotron resonance mass spectroniété? (FT-ICR) by using the
procedure shown in Scheme 1. Biradibalas generated by transfer
of CH,™ from the 4-dehydrobutanoyl cation to the nitrogen atom
of 5-nitroisoquinoline (analogous reaction as shown in Scheme 1)
followed by sustained off-resonance irradiated collision-activated
dissociatioA! (SORI-CAD) to cleave the nitro group. Biradical
and monoradicald were generated by previously described
methods'’-2° Monoradicale was generated by transfer of g
from the 4-dehydrobutanoyl cation to the nitrogen atom of isoquino-
line. Radicalsa—e were transferred into a clean cell, isolated, and
allowed to react with reagents for varying periods of time to
determine second-order reaction rate constadg) @nd reaction
efficiencies Kexy/Keolision), as described previously:-2022 The
structures of the new triradical, and biradicalb, were confirmed
using structurally diagnostic reactions described previotishk.

A general comparison of the reactivity of triradicaland the
biradicalsb andc (Table 1) reveals a somewhat surprising result:
the triradical is not more reactive than the biradicals despite its
three radical sites. In fact, the triradical is substantil@$s reactie

T Current address: Kos Pharmaceuticals, Inc., 1 Cedar Brook Drive, Cranbury,
NJ 08512.
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Table 1. Reaction Efficiencies? and Product Branching Ratios?

A @ %—N c /S\S/

HCN abs 1.00 | SCH; abs

N (2°) CN abs 0.87
@;}3 No No (2°) CH;" trans|  (2°) SCH,
o ou|  reaction reaction | Eff=41% abs
H abs 0.04
a 2H abs
0.09
Eff=14%

T abs 1.00 H abs CN abs 0.51 SCH; abs

R Eff=24% 0.73 (2°)CH;" trans | 1.00
O\/),c\e 2xHabs | HCN abs Eff=19%

h 0.27 0.49
b Eff=9% Eff=71%
I abs 0.83 CN abs 0.15 SCH; abs
N Adduct (2°) CN abs 1.00
E:CI"? 0.17 No HCN abs (2°) SCH;
o o Eff=0.3% reaction | 0.85 abs
(2°) HCN Eff=6%
c abs
(2°) Addition
Eff=40%
I abs H abs CN abs 1.00 SCH; abs
N 0.98 1.00 Eff=67% 1.00
O/v)"({) Allyl abs Eff=7% Eff=26%
e 0.02
d Eff=29%
I abs H abs HCN abs
C@@ 0.67 1.00 0.68 No
AN, | Allyl abs Eff=very (2°) Adduct reaction
' 033 slow (2° m/z 185°
Eff=0.16% CH;" trans 0.32
€ Eff=2%

aReaction efficiencies (Eff) are reportediasciodKeolision x 100%.° abs
= abstraction, trar= transfer; secondary products are noted &3 éxd
are listed under the primary product that produces ttfddmknown
secondary product.

than theo,z-biradicalb. However, it displays reactivity similar to
that of theo,o-biradicalc. For example, the triradical is unreactive
toward tetrahydrofuran (THF), just like and reacts wittert-butyl
isocyanide at the same efficiency @¥On the other hand reacts
with THF, tert-butyl isocyanide, and allyl iodide at a higher
efficiency thana and c. To rationalize these observations, the
reactivity of related monoradicals was also examined.

10.1021/ja054514f CCC: $30.25 © 2005 American Chemical Society
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A comparison of the reactivity of the- andzz-monoradicalgd 1 L 1
ande provides information on the characteristic reactivity of each G - -_— -_
radical type (Table 1). The-radical site is clearly the less reactive
moiety (due to spin delocalization), as evidenced by very low 1 1 L

— - — - e—

efficiencies measured foe in reactions with THF,tert-butyl n
isocyanide, and allyl iodide, and the lack of reactivity toward
dimethyl disulfide. The analogousmonoradicall is substantially
more reactive. This radical undergoes H-atom abstraction from THF,
CN-abstraction fromert-butyl isocyanide, and I-atom abstraction
from allyl iodide at drastically greater efficiencies, and it also
abstracts CkB from dimethyl disulfide at a high efficiency.

When theo- and z-radical moieties are present in the same
molecule, the reactivity is dominated by theradical site, as
revealed by the reactivity of thezz-biradicalb. Biradicalb reacts
at a similar efficiency as the-monoradicat with THF (9 vs 7%),
tert-butyl isocyanide (71 vs 67%), dimethyl disulfide (1926%),
and allyl iodide (24 vs 29%). The-radical site contributes after  (Taple 1). In conclusion, addition of a-radical site to thes,o-
reactions have quenched theadical site. This takes place either  pjradicalc or ao-radical site to thes,z-biradicalb does not enhance
via reactions with the neutral radical products formed at the thejr reactivity.
o-radical site before the collision complex dissociates or via
secondary reactions after dissociation of the collision complex. For
example, after the-radical site inb has abstracted CN fromert-
butyl isocyanide, the collision complex either directly dissociates
to the CN-abstraction product anert-butyl radical (51% of the
time) or thetert-butyl radical reacts with ther-radical site by
H-atom transfer (before dissociation) to yield isobutene and an
HCN-abstraction product (49%). The CN-abstraction product still
contains an unreactedradical site, which undergoes a secondary
reaction by transfer of CH* to anothertert-butyl isocyanide
molecule. This behavior has also been observed for other charged
carbon-centered radicad%3! The CH™ transfer reaction is
facilitated by electron-withdrawing substituents in the remote phenyl
ring of the radical. For example, while the-monoradicale
undergoes the reaction at about 1% efficiency (in competition with
HCN-abstraction), the 5-nitro derivative o reacts at 46%
efficiency and the 5,8-dinitro derivative reacts at collision rate
(100% efficiency). Similar observations were made for ;6H
abstraction from dimethyl disulfide and I-atom abstraction from
allyl iodide. Thesw-monoradicale is unreactive toward dimethyl
disulfide and reacts only very slowly with allyl iodide, while the
5-nitro and 5,8-dinitro derivatives @&react with both reagents at
substantially higher efficiencies.
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Figure 1. Principal ground-state electron configurations for triradigal
(CASPT2/cc-pVDZ/IMCSCF/cc-pVDZ level of theory).

resembles that of the,o-biradical c, as mentioned above. The
sr-radical site in triradicah reacts only after reactions have taken
place at the more reactive-radical sites, just like for the,-
biradicalb. For example, the HCN-abstraction productdas the
CN-abstraction product dif) transfers CH' to tert-butyl isocyanide
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